Country environment and development profiles
Country statistics
Development indicators
Environment and biodiversity data
Forest-related greenhouse gas fluxes
Net forest-related greenhouses gas flux represents the net exchange of greenhouses gas between forests and the atmosphere between 2001 and 2020. This net flux layer is part of the forest carbon flux model described in Harris et al. (2021). Here, the average annual net fluxes in MtCO₂e is shown at global level and the average annual net fluxes in MtCO₂e/ha in protected areas and outside protected areas at national level.
The researcher estimated the Net Forest Carbon Flux calculating the balance between carbon emitted and sequestered by forests during the last 20 years (2001-2020). Negative values are found where forests sequestered more carbon from the atmosphere than what they emitted and positive values are found where emissions from stand-replacing forest disturbances were higher than removals. Emissions include all relevant ecosystem carbon pools (aboveground biomass, belowground biomass, dead wood, litter, soil) and greenhouse gases (CO2, NH4, N2O) while removals are into the aboveground and belowground biomass pools.
Source:Harris et al. (2021). Global maps of 21st century forest carbon fluxes, from Global Forest Watch.CC BY 4.0
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Standard Material Transfer Agreements (SMTAs)
Indicator 15.6.1: Total reported number of Standard Material Transfer Agreements (SMTAs) transferring plant genetic resources for food and agriculture to the country (number). The Contracting Parties to the Treaty on Plant Genetic Resources for Food and Agriculture have established a Multilateral System both to facilitate access to Plant Genetic Resources for Food and Agriculture and to share, in a fair and equitable way, the benefits arising from the utilization of these resources, on a complementary and mutually reinforcing basis. Article 12.4 of the Treaty provides that facilitated access under the Multilateral System shall be provided pursuant to a Standard Material Transfer Agreement, and the Governing Body of the Treaty, in its Resolution 1/2006 of 16 June 2006, adopted the Standard Material Transfer Agreement.
The Standard Material Transfer Agreement is a mandatory model for parties wishing to provide and receive material under the Multilateral System.
For this complementary sub-indicator, the unit of measurement is the number of Standard Material Transfer Agreements (SMTAs). The total number of SMTAs transferring plant genetic resources for food and agriculture to the country is a cumulative figure. It is calculated based on information generated through the Easy-SMTA platform. The data is the number of SMTA reported through the online system of Easy-SMTA for each country. SMTA is a mandatory contract that Contracting Parties of the International Treaty have agreed to use whenever plant genetic resources falling under the Multilateral System are made available through transfer. The number of SMTA issued (signed) could be higher, as all SMTAs signed may not be reported through the online system and therefore not recorded
Natural Areas Protection Levels
How well are different ecosystem types, as indicated by land cover, preserved and how strong are anthropogenic changes affecting their distribution in a given area? Human pressures are constantly increasing and it is important to monitor the consequences of the associated changes on the environment, in particular inside and around protected areas to ensure that natural ecosystems and their
associated species and ecosystem functions (e.g. goods and services) are preserved. By comparing land cover maps over time at the country, ecoregion and protected area level, land use changes can be identified.
Indicator unit: Natural areas and their protection statistics are expressed in km2 of the area of interest.
Area of interest: Natural areas and their protection statistics have been generated for each country.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Average protection of Key Biodiversity Areas
In which countries are the sites that most contribute to global biodiversity persistence located and how well are these sites covered by protected areas in each country?
Safeguarding the Key Biodiversity Areas (KBAs) is vital for halting the decline in biodiversity and for ensuring the long-term and sustainable use of terrestrial and marine natural resources. The establishment of protected areas in the locations where these KBAs are found is one of the priority actions to safeguard their conservation values. The KBA-related indicators contribute to measuring progress towards Aichi Target 11 of the Convention on Biological Diversity (CBD), and are also part of the suite of indicators adopted to assess progress towards Sustainable Development Goal 15 (life on land).
Indicator unit: Average protection percentage of KBAs.
Area of interest: The indicator is available at the country level.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Protection Levels of Key Biodiversity Areas (KBAs) by country
In which countries are the sites that most contribute to global biodiversity persistence located and how well are these sites covered by protected areas in each country? Safeguarding the Key Biodiversity Areas (KBAs) is vital for halting the decline in biodiversity and for ensuring the long term and sustainable use ofterrestrial and marine natural resources. The establishment of protected areas in the locations where these KBAs are found is one of the priority actions to safeguard their conservation values. The KBA-related indicators contribute to measuring progress towards Aichi Target 11 of the Convention on Biological Diversity (CBD), and are also part of the suite of indicators adopted to assess progress towards Sustainable Development Goal 15 (life on land).
Indicator unit: Number of KBAs in each country.
Area of interest: Number of KBAs completely covered by protected areas (PAs), partially covered by PAs, and with no coverage by PAs in each country
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Protected Areas Connectivity (ProtConn)
How well connected are the terrestrial protected area systems at the country level? This indicator can be used to assess the degree to which the spatial arrangement of Protected Areas (PAs) is successful in ensuring connectivity of protected lands; to monitor the country progress towards Aichi Target 11 of the Convention on Biological Diversity (CBD) and design where additional efforts are most needed in expanding or reinforcing the connectivity of PA systems.
Reference: Saura, S., Bastin, L., Battistella, L., Mandrici, A., Dubois, G. 2017. Protected areas in the world’s ecoregions: how well connected are they? Ecological Indicators, http://dx.doi.org/10.1016/j.ecolind.2016.12.047
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Megafauna Conservation Index
The Megafauna Conservation Index (MCI), developed by researcher led by Peter Lindsey of the University of Pretoria in South Africa, wants to assess the spatial, ecological and financial contributions of countries towards conservation of the world’s terrestrial megafauna. The index focused on three main components regarding megafauna ecology and conservation:
the proportion of the country occupied by each megafauna species,
the proportion of the range of these species that’s strictly protected in each country
the amount of money spent on conservation by each country – either domestically or internationally, relative to GDP.
Here the index is reported for the ACP countries.
In the paper megafauna is defined as large mammals as species weighing more than 150 kg for carnivores and 100 kg for omnivores and herbivores.
MCI index was then standardised into a 0–100 scale.
To learn more on the methodology used by research to estimate the MCI, please refer to the paper:
Lindsey, P. A., Chapron, G., Petracca, L. S., Burnham, D., Hayward, M. W., Henschel, P., … & Ripple, W. J. (2017). Relative efforts of countries to conserve world’s megafauna. Global Ecology and Conservation, 10, 243-252. doi:10.1016/j.gecco.2017.03.003
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Protection of the West African Manatee
The Memorandum of Understanding concerning the concerning the Conservation of the Manatee and Small Cetaceans of Western Africa and Macaronesia was concluded under the auspices of the Convention on Migratory Species (CMS) and came into effect on 3 October 2008. It will remain open for signature indefinitely. It aims to achieve and maintain a favourable conservation status for manatees and small cetaceans of Western Africa and Macaronesia and their habitats and to safeguard the associated values of these species for the people of the region. Various threats, including direct and accidental catch, coastal development, pollution and habitat degradation, have caused West African marine mammal populations to decline rapidly. The West African manatee belongs to the order Sirenia and is one of three manatee species, along with the Amazonian and the American manatee. Being the most threatened of the three species, as noted by the CMS Scientific Council in 1999, it is listed in Appendix II of the Convention. Among the main threats for this species are the destruction of its natural habitats, mangroves and coastal wetlands, by pollution and overexploitation; and the hunting for meat, leather and oil.
Warm-Water Corals Protection
The dataset shows the country's protection percentage of Warm-Water Corals for African, Caribbean and Pacific countries. The original dataset and statistics are provided by UNEP World Conservation Monitoring Centre (UNEP-WCMC).
Source:UNEP-WCMC (2021). Ocean+ Habitats [On-line], [July 2021]. Available at: habitats.oceanplus.org
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Geospatial Data - State of NBSAPs publication_2021
STATUS OF DEVELOPMENT OF NATIONAL BIODIVERSITY STRATEGIES AND ACTION PLANS OR EQUIVALENT INSTRUMENTS (NBSAPS) In the ACP group of states (including South Sudan, an observer at ACP), 73 countries have submitted an NBSAP following the adoption of the Strategic Plan for Biodiversity 2011-2020, including the Aichi Biodiversity Targets and 9 countries had submitted an NBSAP prior to the adoption of the Strategic Plan for Biodiversity 2011-2020. [Status at January 2021]
Time Series - Average proportion of Terrestrial Key Biodiversity Areas (KBAs) covered by protected areas (%)
Extract from UN Statistics Division SDG metadata:
This indicator Proportion of important sites for terrestrial and freshwater biodiversity that are covered by protected areas shows temporal trends in the mean percentage of each important site for terrestrial and freshwater biodiversity (i.e., those that contribute significantly to the global persistence of biodiversity) that is covered by designated protected areas.
The full metadata record is available here.
Total carbon
Indicator unit: Amount of carbon stored in the soil (0 to 30 cm depth), expressed in Mg (megagrams or tonnes) per km2 .
Area of interest The SOCI has been calculated at the country level and for all protected areas and is provided and for each country, each terrestrial ecoregion and each terrestrial and coastal protected area of size ≥ 1 km2.
Policy question: There are two main policy questions to which the SOCI indicator is relevant:
- How do protected areas contribute, through the conservation of soil resources, to the fertility, health and productivity of the ecosystems and to the livelihoods of the local communities that depend on these resources? Soil organic carbon (SOC) is the main component of soil organic matter, which is critical for the stabilization of soil structure, retention and release of plant nutrients, and water infiltration and storage in soil. SOC is therefore essential to ensuring soil health, fertility and food production. The loss of SOC indicates a certain degree of soil degradation, and can happen through unsustainable management practices such as excessive irrigation or leaving the soil bare, without significant vegetation cover.
- How do protected areas contribute to soil carbon storage and hence to offset the impacts of fossil fuel emissions and to climate change mitigation? Soils represent the largest terrestrial organic carbon reservoir. Carbon stored in soils worldwide exceeds the amount of carbon stored in phytomass and in the atmosphere, and is the second largest global carbon store (sink) after the oceans. Changes in land use and land cover can cause SOC decreases and carbon emissions, which are one of the largest sources of human-caused carbon emissions to the atmosphere. Protected areas may contribute to soil carbon retention and hence to the reduction of net emissions of greenhouse gasses responsible for climate change.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Above ground carbon
Indicator unit: The above-ground carbon (AGC) is expressed in Mg (megagrams or tonnes) of carbon per km2 . It corresponds to the carbon fraction of the oven-dry weight of the woody parts (stem, bark, branches and twigs) of all living trees, excluding stump and roots, as estimated by the GlobBiomass project (globbiomass.org) with 2017 as the reference year.
Area of interest: The AGCI has been calculated at the country level and for all protected areas and is provided for each country, each terrestrial ecoregion, and each terrestrial and coastal protected area of size ≥ 1 km2.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Soil organic carbon
Indicator unit: Amount of carbon stored in the soil (0 to 30 cm depth), expressed in Mg (megagrams or tonnes) per km2.
Area of interest: The SOCI has been calculated at the country level, terrestrial ecoregion level and for all protected areas and is provided for each country and each terrestrial and coastal protected area of size ≥ 1 km2.
Policy question: There are two main policy questions to which the SOCI indicator is relevant: How do protected areas contribute, through the conservation of soil resources, to the fertility, health and productivity of the ecosystems and to the livelihoods of the local communities that depend on these resources? Soil organic carbon (SOC) is the main component of soil organic matter, which is critical for the stabilization of soil structure, retention and release of plant nutrients, and water infiltration and storage in soil. SOC is therefore essential to ensuring soil health, fertility and food production. The loss of SOC indicates a certain degree of soil degradation, and can happen through unsustainable management practices such as excessive irrigation or leaving the soil bare, without significant vegetation cover. How do protected areas contribute to soil carbon storage and hence to offset the impacts of fossil fuel emissions and to climate change mitigation? Soils represent the largest terrestrial organic carbon reservoir. Carbon stored in soils worldwide exceeds the amount of carbon stored in phytomass and in the atmosphere, and is the second largest global carbon store (sink) after the oceans. Changes in land use and land cover can cause SOC decreases and carbon emissions, which are one of the largest sources of human-caused carbon emissions to the atmosphere. Protected areas may contribute to soil carbon retention and hence to the reduction of net emissions of greenhouse gasses responsible for climate change.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Below ground carbon
Indicator unit: The belowground biomass carbon (BBC) is expressed in Mg (megagrams or tonnes) of carbon per km2 . It represents an estimation of the carbon stored in the roots of all living trees. This carbon pool is calculated as a fraction of the aboveground biomass carbon stock using root-to-shoot ratios (R). It is derived from two main data sources: the global aboveground biomass map produced by the GlobBiomass project (globbiomass.org) and the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).
Area of interest: The BBCI has been calculated at the country level, terrestrial ecoregion level and for all protected areas and is provided for each country and each terrestrial and coastal protected area of size ≥ 1 km2.
Policy question: There are two main policy questions to which BBCI is relevant:
- How do protected areas contribute, through the conservation of vegetation resources, to the health and productivity of the ecosystems and to the sustainability of the local communities that depend on these ecosystem services derived from them? Tree-root systems provide various ecosystem services that improve soil conditions and prevent soil degradation.
- How do protected areas contribute to carbon storage and hence to offset the impacts of fossil fuel emissions and to climate change mitigation? Forests represent one of the largest terrestrial organic carbon reservoirs, and significantly contribute to the regulation of the global carbon cycle. Root biomass represents a stable and relatively inaccessible carbon stock, mainly affected by the removal of the canopy. Protected areas may contribute to biomass and carbon retention and hence to the reduction of net emissions of greenhouse gasses responsible for climate change.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Irrecoverable Carbon
A new paper published in Nature Sustainability mapped the irrecoveral carbon in earth's ecosystems. It shows how manageable, vulnerable and irrecoverable carbon are distributed among ecosystems. Petland, mangrove forests, old-growth forests are the most important- reserve of irrecoverable carbon. ““Irrecoverable carbon” refers to the vast stores of carbon in nature that are vulnerable to release from human activity and, if lost, could not be restored by 2050 — when the world must reach net-zero emissions to avoid the worst impacts of climate change..”. Here we are showing the percentage of irrecoverable carbon density by ACP country in million tonnes and the mean of irrecoverable carbon density for the year 2018 in Mg ha-1 protected by protected and conserved areas.
To explore deeper the original dataset and research, visit Conservation International Resilience Atlas. Source: Noon, M.L., Goldstein, A., Ledezma, J.C. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat Sustain 5, 37–46 (2022). https://doi.org/10.1038/s41893-021-00803-6
http://creativecommons.org/licenses/by/4.0/.t
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Carbon Storage in Mangrove Forests
Mangroves provide both climate change mitigation and adaptation services. They provide benefits for coastal communities and they are among the most effective carbon-capture ecosystems. If they are degraded or cleared, the carbon stored will be released into the atmosphere as CO2 and it will exacerbate climate changes. Target 8 of the First Draft of the Post-2020 Global Biodiversity Framework said: “Minimize the impact of climate change on biodiversity, contribute to mitigation and adaptation through ecosystem-based approaches, contributing at least 10 GtCO2e per year to global mitigation efforts, and ensure that all mitigation and adaptation efforts avoid negative impacts on biodiversity.” Mangrove habitats contribute to climate mitigation targets. This layer wants to show the percentage of total carbon stored in mangroves per ACP country in comparison with the global mangrove total organic carbon stored.
Source: Global Mangrove Watch
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
eConservation
Habitat diversity in protected areas
How important is a given area in terms of habitat diversity and associated species diversity? By identifying distinct habitats in a given area, one can highlight areas supporting a large variety of structural and functional ecosystem properties and, indirectly, a potentially higher species diversity.
Indicator unit: The THDI is derived from the square of the number of Terrestrial Habitat Functional Types (THFTs) encountered in a given area divided by the square root of the surface (in km2 ) of the protected area. The higher the THDI, the larger the diversity of habitats.
Area of interest: The THDI can be generated for any terrestrial area (e.g. country, ecoregion or protected area). The THDI has been calculated for each terrestrial protected area of size ≥ 5 km2 and for the terrestrial parts of each coastal protected areas of size ≥ 5 km2 .
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Inland surface water dynamics
How well are we protecting freshwater ecosystems and how strong are anthropogenic changes affecting surface water in a given area? Human pressures are constantly increasing and it is important to monitor the consequences of the associated changes on the environment, in particular inside and around protected areas, to ensure that natural ecosystems and their associated species and ecosystem functions (e.g. goods and services) are preserved. By comparing surface water maps overtime at the country and protected area level, changes in water regimes can be identified.
Indicator unit: Areas of inland permanent and seasonal surface water and their changes over time (1984 - 2018) are expressed in km2 and percentages. The following statistics are computed for each protected area, each country and each terrestrial ecoregion and are provided, together with associated maps, for each terrestrial and coastal protected area of size ≥ 1 km2 and each country :
- Net change (km2 ) of permanent surface water (1984 - 2020)
- Net change (km2 ) of seasonal inland water (1984 - 2020)
- Net change (km2 ) of protected permanent surface water (1984 - 2020)
- Net change (km2 ) of protected seasonal inland water (1984 - 2020)
We further provide maps of water occurrence, water occurrence change intensity and water transitions. Area of interest Surfaces of inland surface water and change statistics have been computed at the country level, terrestrial ecoregion level and for all protected areas.
Area of interest: Surfaces of inland surface water and change statistics have been computed at the country level and for all protected areas.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Forest Dynamics
How well are forests preserved in a given area? Forests are one of the most important terrestrial habitats and a carbon sink that needs to be conserved to fulfil biodiversity conservation and climate change mitigation targets. By informing of forest cover trends, and their spatial distribution, it is possible to highlight countries, ecoregions or specific protected areas with worrying forest loss trends, as well as others where forest cover is well maintained or even increases through time either naturally or through forestation.
Indicator unit: Forest change statistics are expressed as the trend in the percent of the land covered by forests, as well as the total forest area (km2 ) gained or lost when compared to the reference year 2000.
Area of interest: The forest cover for the year 2000 and the forest change statistics are computed for each protected area, each country and each ecoregion and are provided for each terrestrial and coastal protected area of size ≥ 1 km2 ,each country and each terrestrial ecoregion.
____
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Land Fragmentation
Indicator units: Natural (and semi-natural) land fragmentation refers to the reduction of area, the emergence of discontinuities and the isolation of natural land patches within a region of interest. Natural land spatial pattern is a relevant measure to capture changes in size, shape and structural connectivity, in particular the breaking down of large patches of natural land into smaller patches, the presence of linear features and isolated small fragments. The Natural Land Pattern Index (NLPI) assesses the spatial pattern of the natural and semi-natural lands for a given year (here, at year 2015) by reporting the area (in km2) covered by six spatial pattern classes (core, edge, linear feature, islet, core-perforation, other non-natural land) within a region of interest. The Natural Land Pattern Dynamics (NLPD) index reports the trends in the area occupied by these pattern classes in the last 20 years (1995-2015) within a region of interest. The landscape mosaic is simplified into natural/semi-natural lands, water bodies and non-natural lands. Non-natural lands such as cropland, transport infrastructure and settlements, are considered fragmenting elements.The six pattern classes are determined based on the spatial arrangement, shape and size of the land cover patches; See below (Use and Interpretation section) for a detailed description of these six classes. Fragmentation can be further resumed in one single indicator value, such as the edge to core ratio. The Natural Land Fragmentation Index (NLFI) and the Natural Land Fragmentation Dynamics (NLFD) will be included in the next update of the DOPA.
Area of interest: NLPI and NLPD are calculated in DOPA for each terrestrial and coastal protected area, as well as for countries and terrestrial ecoregions, and are provided in DOPA Explorer for all terrestrial and coastal protected areas of size ≥ 1 km2 , for countries and for terrestrial ecoregions. The spatial distribution of the six pattern classes is mapped and shown in DOPA for all natural/semi-natural land, either inside or outside protected areas.
Policy question: How can we assess the spatial integrity of natural/semi-natural ecosystems?
Where and how much are global and local pressures fragmenting natural/semi-natural lands? Pressures on the natural land, particularly
human driven pressures, are constantly increasing and it is important to monitor how they translate in changes in the spatial pattern and
fragmentation levels of natural/semi-natural ecosystems, in particular inside and around protected areas, to ensure that these ecosystems, and their associated species, their functions and services, are preserved.
___
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Land Degradation
Humans need increasing amounts of plant biomass for producing food, fodder, fiber and energy. Being able to meet these demands in the long term requires a sustainable use of land and vegetation resources. A persistent reduction in biomass production or land productivity will directly and indirectly impact almost all terrestrial ecosystem services and benefits that form the basis for sustainable livelihoods of all human communities. Tracking changes in land productivity is, therefore, an essential part of monitoring ecosystem changes and land transformations that are typically associated with land degradation.
The state of the Earth’s vegetation cover and its development over time is one reliable and accepted measure associated with land productivity.
Indicator unit: Area in km2 with decreasing, stable or increasing trend in land productivity from 1999 to 2013. Land productivity is calculated from satellite observations of photosynthetically active vegetation as the above-ground biomass production accumulated during the annual growing season.
Area of interest: The LPD has been calculated in DOPA for each terrestrial and coastal protected area, for their 10km unprotected buffer, as well as for countries and terrestrial ecoregions, and is provided in DOPA Explorer for all terrestrial and coastal protected areas of size ≥ 1 km2 , for countries and for terrestrial ecoregions.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Forest Landscape Integrity Index
The Forest Landscape Integrity Index (FLII) is a composite index created to show the degree of forest integrity for 2019.
The authors identified three Forest Integrity categories: “high ”“medium”, and “low”.
Here it is presented the % of forested area with High Integrity over the total forested area by country. For Hight Forest Integrity, the authors mean “Interiors and natural edges of more or less unmodified naturally regenerated (i.e., non-planted) forest ecosystems, comprised entirely or almost entirely of native species, occurring over large areas either as continuous blocks or natural mosaics with non-forest vegetation; typically little human use other than low-intensity recreation or spiritual uses and/or low-intensity extraction of plant and animal products and/or very sparse presence of infrastructure; key ecosystem functions such as carbon storage, biodiversity, and watershed protection and resilience expected to be very close to natural levels (excluding any effects from climate change) although some declines possible in the most sensitive elements (e.g., some high value hunted species).”
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2021)
Warm-Water Corals Extent
The dataset shows the country's extent of Warm-Water Corals for African, Caribbean and Pacific countries. The original dataset and statistics are provided by UNEP World Conservation Monitoring Centre (UNEP-WCMC).
Source:UNEP-WCMC (2021). Ocean+ Habitats [On-line], [July 2021]. Available at: habitats.oceanplus.org
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Cold-Water Corals Extent
The dataset shows the country's extent of Cold-water Corals for African, Caribbean and Pacific countries. The original dataset and statistics are provided by UNEP World Conservation Monitoring Centre (UNEP-WCMC).
Source:UNEP-WCMC (2021). Ocean+ Habitats [On-line], [July 2021]. Available at: habitats.oceanplus.org
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2022)
Cold-Water Corals Protection
The dataset shows the country's protection percentage of Cold-water Corals for African, Caribbean and Pacific countries. The original dataset and statistics are provided by UNEP World Conservation Monitoring Centre (UNEP-WCMC).
Source:UNEP-WCMC (2021). Ocean+ Habitats [On-line], [July 2021]. Available at: habitats.oceanplus.org
Related Policies
---
Data Uploaded by Simona Lippi using the BIOPAMA Services (2021)
Country extinction-risk footprints
A new study quantified how the consumption habits of people in each country, through trade and supply networks, imperil threatened and near-threatened terrestrial species of amphibians, mammals and birds. For the study, recently published in Scientific Reports, researchers used a metric called the extinction-risk footprint. The team found that 76 countries are net “importers” of this footprint, meaning they drive demand for products that contribute to the decline of endangered species abroad. Other countries, e.g. Madagascar, Tanzania, are designated as net “exporters,” meaning their extinction-risk footprint is driven more by consumption habits in other countries. In several countries domestic consumption is the most significant driver of extinction risk within those nations. Learn more: https://www.nature.com/articles/s41598-022-09827-0
This sub-dataset provides detail on each country's extinction-risk footprint. A global level, the map shows the impact of global consumption on the species found within that country’s borders in percentage. A national level, the map shows the imported and exported consumption for each country. The imported extinction-risk footprint is a result of consumption within the country driving extinction risk in other countries, and its exported extinction risk footprint is a result of consumption outside of the country driving the extinction risk within the country.
Uploaded by Simona Lippi (Using BIOPAMA GEONODE)
What is the conservation status of the fish stocks?
A fundamental requirement for productive fisheries is maintenance of the biodiversity that offers natural systems resilience against changing conditions.(FAO, State of World Fishery and Aquaculture 2020). Threatened marine fish species can be legally caught in industrial fisheries and moreover according to FAO, annual estimate of fisheries interactions with at least 20 million individuals of endangered, threatened and/or protected species. Here we show the catch records (tonnes) of globally threatened species in the EEZ by country in the last 10 years.
---
Data Uploaded by Simona Lippi using BIOPAMA Services (2022)
Palm oil plantations-Small holdings
Oil seed crops, especially oil palm, are among the most rapidly expanding agricultural land uses, and their expansion is known to cause significant environmental damage. Accordingly, these crops often feature in public and policy debates, which are hampered or biased by a lack of accurate information on environmental impacts. This dataset presents a global crop map. It covers areas where oil palm plantations were detected at global scale, and includes industrial and smallholder mature oil palm plantations.
---
Data Uploaded by Luca Battistella using BIOPAMA Services (2021)
Change in Population Pressure Indicator (CPPI)
How much potential impact may humans living in a protected area have on that protected area and on the habitats, species and ecological processes therein? How much of this potential impact is due to recent (15-year) increases in human population density? By identifying protected areas with low population density, it is possible to highlight locations that are likely to better conserve the species and ecological processes that are associated to more pristine conditions and that are more sensitive to the direct and indirect impacts from human activities. On the other hand, by identifying protected areas with a relatively high or increasing population density, it is possible to suggest in which locations it is likely most necessary to ensure an effective management of the human-nature relationships and the sustainability of human activities. In these locations, a priority would be to orient human activities and livelihoods in ways that are compatible with the conservation targets, such as ecotourism and other regulated recreation activities, or supporting traditional modes of rural development that have been compatible with the persistence of the biodiversity values of the protected area.
Indicator unit: The PPI assesses human population density for a given area in year 2015, expressed as the average number of people per km2 . The CPPI assesses the percent change in human population density for the same area from 2000 to 2015.
Area of interest: PPI and CPPI have been calculated for each terrestrial protected area and for the terrestrial parts of each coastal protected areas. To assess pressures around protected areas, we further computed the indicators for the 10 km unprotected buffer zone around the protected areas of size ≥ 5 km2 . PPI and CPPI are reported in DOPA Explorer for each terrestrial and coastal protected area of size ≥ 1 km2 and their unprotected buffers (values for buffers are reported only for protected areas of size ≥ 5 km2 ). We further show trends regarding the changes in rural and urban population at the country level.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Population Pressure Indicator (PPI)
How much potential impact may humans living in a protected area have on that protected area and on the habitats, species and ecological processes therein? How much of this potential impact is due to recent (15-year) increases in human population density? By identifying protected areas with low population density, it is possible to highlight locations that are likely to better conserve the species and ecological processes that are associated to more pristine conditions and that are more sensitive to the direct and indirect impacts from human activities. On the other hand, by identifying protected areas with a relatively high or increasing population density, it is possible to suggest in which locations it is likely most necessary to ensure an effective management of the human-nature relationships and the sustainability of human activities. In these locations, a priority would be to orient human activities and livelihoods in ways that are compatible with the conservation targets, such as ecotourism and other regulated recreation activities, or supporting traditional modes of rural development that have been compatible with the persistence of the biodiversity values of the protected area.
Indicator unit: The PPI assesses human population density for a given area in year 2015, expressed as the average number of people per km2 . The CPPI assesses the percent change in human population density for the same area from 2000 to 2015.
Area of interest: PPI and CPPI have been calculated for each terrestrial protected area and for the terrestrial parts of each coastal protected areas. To assess pressures around protected areas, we further computed the indicators for the 10 km unprotected buffer zone around the protected areas of size ≥ 5 km2 . PPI and CPPI are reported in DOPA Explorer for each terrestrial and coastal protected area of size ≥ 1 km2 and their unprotected buffers (values for buffers are reported only for protected areas of size ≥ 5 km2 ). We further show trends regarding the changes in rural and urban population at the country level.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
ESA Land Cover change 1995-2020
WA PA percentage
West Africa boasts a network of protected areas, including both terrestrial and marine zones, which are vital for biodiversity conservation and ecosystem health. These areas, ranging from small forest reserves to expansive national parks and transboundary landscapes, play a crucial role in safeguarding endangered species and habitats. They also provide essential ecosystem services and contribute to local economies through tourism and other sustainable initiatives
Time Series - Forest area annual net change rate
Trends in forest area are crucial for monitoring SFM. The first sub-indicator focuses on both the direction of change (whether there is a loss or gain in forest area) and how the change rate is changing over time; the latter is important in order to capture progress among countries that are losing forest area, but have managed to reduce the rate of annual forest area loss.
Time Series - Forest area as a proportion of total land area (%)
Forests fulfil a number of functions that are vital for humanity, including the provision of goods (wood and non-wood forest products) and services such as habitat for biodiversity, carbon sequestration, coastal protection and soil and water conservation. The indicator provides a measure of the relative extent of forest in a country. The availability of accurate data on a country's forest area is a key element for forest policy and planning within the context of sustainable development. Changes in forest area reflect the demand for land for other uses and may help identify unsustainable practices in the forestry and agricultural sector. Forest area as percentage of total land area may be used as a rough proxy for the extent to which the forests in a country are being conserved or restored, but it is only partly a measure for the extent to which they are sustainably managed. The indicator was included among the indicators for the Millennium Development Goals (MDG) (indicator 7.1 “Proportion of land covered by forest”).
Fires
Map Layers
Floods
Sea Surface Temperature Anomalies
Sea Surface Temperature Trend
Coral Bleaching HotSpot
Species Richness Maps
Map Layers
Endemic Species Richness Maps
Map Layers
Threatended Endemic Species Richness Maps
Map Layers
Number of endemic mammals
Indicator unit: Counting of the number of endemic mammals at site and country levels.
Area of interest: Species lists are generated for each terrestrial and coastal protected area, and are provided in BIOPAMA for all protected areas of size ≥ 1 km2, and for the protected portion of countries. General statistics are reported at country level, species richness is mapped at global level.
Policy question: Where are the areas in the world hosting most species? How many species in a country have their ranges covered at least partially by protected areas? How many threatened species are endemic and how many of these have their ranges protected? Where are the main gaps in terms of species observations? These are key questions for assessing whether conservation measures have been taken to prevent extinctions on to measuring progress on Aichi Targets 11 and 12 of the Convention on Biological Diversity (CBD).
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Number of endemic birds
Indicator unit: Counting of the number of endemic amphibians at site and country levels.
Area of interest: Species lists are generated for each terrestrial and coastal protected area, and are provided in BIOPAMA for all protected areas of size ≥ 1 km2, and for protected portion of countries. General statistics are reported at country level, species richness is mapped at global level.
Policy question: Where are the areas in the world hosting most species? How many species in a country have their ranges covered at least partially by protected areas? How many threatened species are endemic and how many of these have their ranges protected? Where are the main gaps in terms of species observations? These are key questions for assessing whether conservation measures have been taken to prevent extinctions on to measuring progress on Aichi Targets 11 and 12 of the Convention on Biological Diversity (CBD).
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Number of endemic amphibians
Indicator unit: Counting of the number of endemic amphibians at site and country levels.
Area of interest: Species lists are generated for each terrestrial and coastal protected area, and are provided in BIOPAMA for all protected areas of size ≥ 1 km2, and for protected portion of countries. General statistics are reported at country level, species richness is mapped at global level.
Policy question: Where are the areas in the world hosting most species? How many species in a country have their ranges covered at least partially by protected areas? How many threatened species are endemic and how many of these have their ranges protected? Where are the main gaps in terms of species observations? These are key questions for assessing whether conservation measures have been taken to prevent extinctions on to measuring progress on Aichi Targets 11 and 12 of the Convention on Biological Diversity (CBD).
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Number of mammals in country reported threatened by IUCN
Species assessed by the International Union for the Conservation of Nature (IUCN) and documented in the IUCN Red List of Threatened Species TM (RLTS) have been used to calculate country summary statistics on the number of endemic and threatened species (IUCN, 2020).
Species included in the Red List are classified into the following categories based on Red List criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation:
Threatened species fall into one of the following three categories:
1) Critically Endangered (CR) – Extremely high risk of extinction in the wild.
2) Endangered (EN) – High risk of extinction in the wild. 3) Vulnerable (VU) – High risk of endangerment in the wild.
Country lists of (protected) Threatened (Critically Endangered, Endangered, Vulnerable) and Near Threatened species are derived by the previously described overlay within protected areas and species ranges,aggregating the results by the ISO3 code reported for the Protected Area by WCMC.
See http://www.iucnredlist.org/ for more details.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Number of birds in country reported threatened by IUCN.
Species assessed by the International Union for the Conservation of Nature (IUCN) and documented in the IUCN Red List of Threatened Species TM (RLTS) have been used to calculate country summary statistics on the number of endemic and threatened species (IUCN, 2020).
Species included in the Red List are classified into the following categories based on Red List criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation:
Threatened species fall into one of the following three categories:
1) Critically Endangered (CR) – Extremely high risk of extinction in the wild.
2) Endangered (EN) – High risk of extinction in the wild. 3) Vulnerable (VU) – High risk of endangerment in the wild.
Country lists of (protected) Threatened (Critically Endangered, Endangered, Vulnerable) and Near Threatened species are derived by the previously described overlay within protected areas and species ranges,aggregating the results by the ISO3 code reported for the Protected Area by WCMC.
See http://www.iucnredlist.org/ for more details.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Number of amphibians in country reported threatened by IUCN.
Species assessed by the International Union for the Conservation of Nature (IUCN) and documented in the IUCN Red List of Threatened Species TM (RLTS) have been used to calculate country summary statistics on the number of endemic and threatened species (IUCN, 2020).
Species included in the Red List are classified into the following categories based on Red List criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation:
Threatened species fall into one of the following three categories:
1) Critically Endangered (CR) – Extremely high risk of extinction in the wild.
2) Endangered (EN) – High risk of extinction in the wild.
3) Vulnerable (VU) – High risk of endangerment in the wild.
Country lists of (protected) Threatened (Critically Endangered, Endangered, Vulnerable) and Near Threatened species are derived by the previously described overlay within protected areas and species ranges,aggregating the results by the ISO3 code reported for the Protected Area by WCMC.
See http://www.iucnredlist.org/ for more details.
---
Data Uploaded by Luca Battistella using the Digital Observatory for Protected Areas Services (2022)
Species Protection Index
Species Protection Index (SPI) evaluates the species-level ecological representativeness of each country’s protected area network. It is a measure of the extent to which a country’s protected areas are ecologically representative on the species level, calculated as the average proportion of the suitable habitat of a country’s species included in the country’s terrestrial protected areas. The index is built on remote-sensing informed species distribution and the protected areas and it is designated to report progress towards AICHI Target 11. To learn more about the methods for calculating this index:
https://ipbes.net/sites/default/files/Metadata_GEO_BON_Map_of_Life_Spec…
---
Data Uploaded by Simona Lippi using BIOPAMA Services (2022)
Wildlife economy potential
The landscape features indicator refers to the presence of lakes, coral reefs and mountain ranges in the countries. The landscape feature indicator is simple presence-absence of big lakes (GLWD_P(0/1), Lehner & Döll, 2004), mountain ranges (GMBA_P(0/1), Global Mountain Biodiversity Assessment, Mountain Inventory v1.2) and warm-water coral reefs (CR_P(0/1), UNEP-WCMC) combined at country level without weighting factors. The indicator varies between 0 and 3. LFR = GLWD_P(0/1) + GMBA_P(0/1) + CR_P(0/1) Despite its simplistic and coarse approach, we included this indicator because it covers some dimensions of wildlife potential underestimated by the other two components. The presence of lakes is strongly correlated with birdwatching, which is quite an important ecotourism niche. Coral reef diving is generally driven by wildlife attraction (coloured corals and fishes), sometimes targeting specific species such as sea turtles and whale sharks. In our indicator, this feature accounts for marine wildlife tourism potential, without overlapping with generic beach tourism. Mountain ranges are prominent landscapes hosting some iconic species – though less known than the Big Five – such as gelada baboon and Ethiopian wolves, mountain forest birds and primates (e.g., mangabeys). These landscape features represent desirable add-ons to usual safaris, since they provide opportunities for tourists to walk or swim, and so obtain relief from offroad driving and rough conditions. The wildlife economy potential composite indicator was calculated in two steps: 1. Species Richness and Biomes Richness indicators were reclassified on a scale from 0 to 3 based on value distribution natural clusters. 2. The reclassified indicators were summed up with the Landscape Features indicator. The final indicator ranges between 1 and 9 and was rescaled to low potential (1-3), medium potential (4-6), and high potential (7-9).
Time Series - Red List Index
Extract from the UN Statistics Division SDG metadata:
The Red List Index measures change in aggregate extinction risk across groups of species. It is based on
genuine changes in the number of species in each category of extinction risk on The IUCN Red List of
Threatened Species (IUCN 2015) is expressed as changes in an index ranging from 0 to 1.
The full metadata record is available here.
Document | Document Type | Publication year | |
---|---|---|---|
Estratégia Nacional e Plano de Ação para a Conservação da Biodiversidade 2015- 2030. | NBSAP | 2014 | |
IUCN PAPACO Website with RAPPAM, METT and EoH Assessments in Africa | Site-level assessment, National assessment, Regional assessment, Technical report, Other | 2020 | |
Regional Network of Marine Protected Areas in West Africa (RAMPAO) Website | Other | 2020 | |
West African Marine Protected Areas (RAMPAO): RAPPAM Assessment 2009 | Site-level assessment, Regional assessment, Technical report | 2009 |